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Abstract-Neural networks have been until very recently a topic of academic research. Recent developments 
of powerful learning algorithms and the increasing number of applications in a great number of disciplines 
suggest that neural networks can provide useful tools for modelling and correlating practical heat transfer 
problems. This paper presents an introduction to computing with neural networks. To evaluate the potential 
of neural networks for correlating heat transfer data, three different examples are solved, using a three-layer 
feedforward neural network. Two different learning algorithms, including the traditional backpropagation 
algorithm, are used to teach the neural network. It is shown that neural networks can be used to adequately 

correlate heat transfer data. 

INTRODUCTION 

MODELLING of heat transfer phenomena has always 
been a major preoccupation of scientists. It is usually 

desired to represent the experimental data with the 
most compact equation or set of equations. This can 
be performed analytically by solving the appropriate 
differential equations or empirically by using tra- 
ditional regression analysis. The analytical approach 
is often inapplicable because of the difficulties in 
obtaining or solving the relevant set of partial differ- 
ential equations. Heat transfer literature abounds of 

heuristic relationships attempting to fit experimental 
data to a system model for the purpose of representing 

the essential aspects of the system and of presenting 
the knowledge in a usable form. 

In many important applications, observable inputs 
are difficult to describe analytically. The best or even 

a good structure for the model cannot be determined 
in advance. Therefore, it is highly desirable to have 
a model that is trainable in both its structure and 

parameter values [I]. An alternative to structured 
modelling is the use of neural networks which allows 
models of complex systems to be built without requir- 
ing the explicit formulation of the possible relation- 
ships that may exist between variables. The idea is to 
build a network that is able to learn, through rep- 

resentative examples, to associate, to a vector of input 
variables, a vector of output variables. Artificial 
neural networks, coupled with an appropriate learn- 
ing algorithm, can be used to learn complex relation- 
ships from a set of associated input-output vectors. 
In essence, a neural network can simply be viewed as 
a large dimensional regression model which can be 
used to model heat transfer phenomena. A more 
detailed description on neural networks is presented 

in the next section. 
This paper provides an introduction to the field of 

neural networks applied to heat transfer problems. 

The nomenclature and characteristics of neural net- 

works are presented and their application for cor- 
relating heat transfer data is demonstrated with three 

examples. 

NEURAL NETWORKS 

The desire of human beings to build artificial sys- 

tems that do the kinds of interesting things that they 
do has long existed. Current research on neuro- 
computers, which has for its objective the birth of a 

system with some human abilities such as learning and 
reasoning, is a good example [2]. Neural networks, as 
they are known today, originate from the work of 
McCulloch and Pitts [3] who demonstrated, in 1943, 

the ability of interconnected neurons to calculate some 
logical functions. Hebb 141, in 1949, pointed out the 
importance of the synaptic connections in the learning 
process. Later, Rosenblatt [5], based on the work of 
his predecessors, presented the first operational model 
of a neural network: the ‘perceptron’. The per- 

ceptron, built as an analogy to the visual system, was 
able to learn some logical functions by modifying the 
synaptic connections. The perceptron gave rise to 
tremendous excitement and research in this field until 

Minsky and Papert, in 1969, demonstrated the severe 
limitations of the perceptron [6]. Their publication, as 
a consequence, almost brought to a halt the important 
research that was performed at that time. It was not 

until 1982, when the work published by Hopfield [7] 
led to a resurgence of interest in neural networks. 
Today, research in artificial neural networks is being 
performed in a great number of disciplines, ranging 
from neurobiology and psychology to engineering 
sciences. It is not possible, yet, to have access to a true 
neural computer. However, it is possible to use the 
methodology of neural networks on sequential digital 
or parallel computers to solve engineering problems. 
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NOMENCLATURE 

EMF electromotive force [mV] T temperature [C] 
F objective function u input vector to the network 
f non-linear transfer function W weight matrices 
.f” first derivative of the linear transfer Y scaled target output vector. 

function 
Gr Grashof number Greek symbols 
H calculated output of a neuron in the 

; 

intermediate parameter in equation (9b) 
hidden layer fraction of the previous weight correction 

I number of neurons in the input layer, learning rate in the gradient descent 
including the bias 

4 
4 surface curvature. 

J number of neurons in the hi den layer, 
including the bias Subscripts 

K number of neurons in the output layer i input layer 
n exponent of power law variation of .i hidden layer 

surface heat flux k output layer 
NM Nusseft number L average along the length of the cylinder 
Pr Prandtl number .Y axial coordinate along the cylinder. 
RU Rayleigh number 
s calculated output of a neuron in the Superscript 

output layer m iteration counter. 

Artificial neural networks are massively parallel, neurons, a layer of output neurons and one or more 
distributed and adaptive systems, modelled on the 
general features of biological networks with the poten- 
tiai for ever-improving performance through a 
dynamical learning process 181. Neural networks are 
made up of a great number of individual processing 
elements, the neurons, which perform simple tasks. A 
neuron, schematically represented in Fig. 1, is the 
basic building block of neural network technology 
which performs a non-linear transformation of the 
weighted sum of the incoming inputs to produce the 
output of the neuron. Inputs and outputs of the net- 
work are normally numeric values scaled between 0 
and 1. The input to a neuron can come from other 
neurons or from outside the network. The non-linear 
transfer function can be a threshold, a sigmoid, a sine 
or a hyperbolic tangent function. 

Neural networks are comprised of a great number 
of interconnected neurons. There exists a wide range 
of network architectures. The choice of the archi- 
tecture depends on the task to be performed. For the 
modelling of physical systems, a feedforward layered 
network is usually used. It consists of a layer of input 

1 1 

1 ie -[J. w] 

FIN;. 1. A simple processing neuron. 

intermediate or hidden layers. In this investigation, a 
three-layer feedforward network was used, that is a 
network with a single hidden layer as shown in Fig. 
2. It has been established that a standard layered 
feedforward network architecture can approximate 
any function of interest provided that a sufficient num- 
ber of hidden neurons are used [9, IO]. The following 
description will therefore be restricted to a three-layer 
network architecture. Using the nomenclature of Fig. 
2, the details of the calculation using a three-layer 
neural network are summarized by the following set 
of equations : 

Hidden layer 

where U is the scaled input vector and H the output 
vector of the neurons contained in the hidden layer. 

FIG. 2. Typical architecture of a three-layer neural nets pork. 



The last elements of these two vectors, U, and H,, are 
the bias and they are set equal to 1. 

Output layer 

The extension to a multi-layer neural network is 
straightforward. 

LEARNING ALGORITHMS 

In a neural network, the knowledge lies in the inter- 
connection weights between neurons and the topology 
of the net [1 I]. Therefore, one important aspect of a 
neural network is the learning process whereby rep- 
resentative examples of the knowledge to be acquired 
are presented to the network so that it can integrate 
this knowledge within its structure. Learning implies 
that the processing element somehow changes its 
input/output behaviour in response to the environ- 
ment. The learning process thereby consists in deter- 
mining the weight matrices, lI$ and Wjk, that produce 
the best fit of the predicted outputs over the entire 
training data set. The basic procedure is to first set 
the weights between adjacent layers to random values. 
An input vector is then impressed on the input layer 
and it is propagated through the network to the out- 
put layer. The difference between the computed out- 
put vector of the network and the scaled target output 
vector is then used to adapt the weight matrices using 
an iterative optimization technique in order to pro- 
gressively minimize the sum of squares of the errors. 
The process is repeated over the entire training set, a 
great number of times, to achieve the desired degree 
of accuracy. 

I. Backpropagation 
The most versatile learning algorithm for this feed- 

forward layered network is backpropagation in which 
a quadratic cost function is minimized by a modified 
gradient descent [I I-151. As the name of this algo- 
rithm suggests, it simply consists of redistributing or 
backpropagating the output errors to the network 
by appropriately modifying the weight matrices. The 
backpropagation algorithm requires the transfer func- 
tion to be differentiable [16] and it is restricted to 
feedforward neural networks. 

Like all gradient descent algorithms, backpropa- 
gation is not guaranteed to actually find the set of 
weights that corresponds to the global minimum 
of the sum of squares of the errors. Indeed, it may 
easily get stuck in a local minimum [17]. However, it 
is important to point out that a different set of weights 
can map equally successfully without being unique. 
In addition, as the size of the network is increased, 
the backpropagation algorithm becomes less efficient 
and it has greater difficulty to converge to a proper 
solution [ 181. Another important drawback of back- 
propagation is that it generally requires a great num- 
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ber of iterations. Indeed, it is necessary to present all 
examples of the learning set many thousand times. 
However, once an appropriate set of weights has been 
obtained, the use of the neural model to recall stored 
information is straightfo~ard. 

Two different strategies are commonly used to 
update the network weight matrices. In the first 
approach, the corrections of weights for each example 
are summed over the entire training data set before 
updating the weights (equations (4) and (5)). In the 
second approach, changes in weights are performed 
after the presentation of each example. These two 
strategies are referred to respectively as periodic 
updating and continuous updating [19]. The second 
strategy is usually preferred since it normally leads to 
faster learning. In this investigation, the error was 
corrected after each presentation of an exampie. 

At the end of each example, it is desired to minimize 
the following sum of squares of the prediction errors 
over all output neurons : 

F(W) =: ; (Y,--s,.* (2) 
k= 1 

which is used to modify each weight of the two 
matrices as follows : 

aF( W w; = wT-‘-Em __ I 1 aw,, m-l 

+pyw;-‘- wy-‘1 

(3) 

where m is an iteration counter. The second term 
represents the fraction of the error gradient that is 
backpropagated through the network. FY is the learn- 
ing rate which provides the step size during gradient 
descent. The last term is called the momentum term 
which forces the change of weight to proceed in the 
same direction as the previous change. It is ciaimed 
that the introduction of momentum speeds up the 
convergence of the algorithm and allows the escape 
from narrow minima [20]. 

The error gradient (8F( W)/dW;,) for each pro- 
cessing element on the output layer, used to correct 
the weights between the hidden layer and the output 
layer is given by 

and for the weights from the input layer to the hidden 
layer 

where indexes and variables in Fig. 2 have been used. 
f’( a) represents the derivative of the non-linear trans- 
fer function. In the present investigation, a sigmoidal 
function (Fig. 1) was used and its derivative is given by 

f’(z) =f(zf(l -f(z)). (6) 
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For more details on neural networks, the reader is 
referred to the paper of Lippman [21] who published 
a clear and well-written introductory article on com- 
puting with neural networks, including the back- 
propagation aigorithm, 

2. Quusi-Newton learnikzg algorithm 

One of the most successful methods for calculating 
the minimum of a function F(W) of several variables, 
when the first derivatives are available, is the popular 
BFGS algo~thm [22, 231. This method is superior to 
the popular steepest descent method because it takes 
implicitly into account second derivatives. The acro- 
nym BFGS stands for Broyden, Fletcher, Goldfarb 
and Shanno who contributed significantly to this 
method. It is now a commercial subroutine : Harwell, 
VAf3A. Powell 1221 has shown that its rate of con- 
vergence is superhnear. 

the hidden layer. Unfortunately, there does not exist 
yet a procedure to determine a priori the number of 
neurons in a hidden layer that will give the desired 
degree of accuracy. This information must bc ob- 
tained experimentally. Figure 3 presents the vari- 
ations of the sum of squares of the prediction errors 
as a function of the number of neurons in the hidden 
layer, obtained with the two weight correction 
methods, tested in this investigation. The maximum 
number of iterations was 5000. Also shown in Fig. 3. 
is the sum of squares of the errors for a polynomial 
regression analysis as a function of the order of the 
polynomial equation. The sum of the squares of the 
errors are based on 201 temperature values in the 
range of O-200’ C. 

This method simply requires the numerical values 
of the objective function F(W), that is the sum of 
squares of residuals (equation (2)), and the vector of 
first derivatives evaluated for the current set of 
weights. The vector of first derivatives was evaluated 
with equations (4) and (5) but could also be evaluated 
with the finite difference approximation. 

RESULTS 

To demonstrate the methodology of neural net- 
works for correlating heat transfer data, three exam- 
ples were chosen : a thermocouple lookup table [24], 
a series of correlations between Nusselt and Rayleigh 
numbers for the free convection around horizontal 
smooth cylinders [25] and the problem of natural 
convection along slender vertical cylinders with vari- 
able surface heat flux [26]. Each of these examples has 
been chosen to cover some important characteristics 
of neural networks. The results for each example are 
presented and discussed in turn. 

Out of the two methods used in this investigation, 
the quasi-Newtot method is by far the most reliable 
and the most accurate optimization method. it is more 
accurate by a factor of two orders of magnitude than 
the traditional backpropagation. Theoretically, the 
backpropagation method can lead to similar results 
provided the appropriate set of initial random weights 
is given. It can more easify get stuck into a focal 
minimum than the quash-Newton method which uses 
implicitly the second derivatives to correct the weight 
connections between neurons in adjacent layers. The 
downhill simplex algorithm [23], due to Nelder 
and Mead [27]. has also been tested and the model- 
fing accuracy obtained with this method was of the 
same order of magnitude as the backpropagation 
method. 

Backpropagation is the standardly used learning 
algorithm with neural networks. The main reason for 
this widespread use is that it can be used safely for 
systems with binary outputs (image processing. fault 
detection. contour detection, etc.). Its main dis- 
advantage is the slow convergence rate. The tuning 
parameters, /Y” and a”‘, of equation (3) can sometimes 
be used to speed up convergence and to escape from 
narrow minima. However, there are no available tech- 
niques to choose these parameters. These parameters 

It is desired to derive a model that will give the 
temperature corresponding to the electromotive force 
(EMF) generated by a chromel-alumel (type K) 
thermocouple [24]. This is the simplest example, that 
one can possibly have. to use a neural network 
and, it is undoubtedly an overkill for this problem. 
However, it was purposely chosen as simple as poss- 
ible to show some important characteristics of neural 
networks. 

The first thing that must be accomplished when 
using a neural network is to determine the architecture 
of the network. For a three-layer neural network used 
in this investigation, the number of neurons in the 
input and output layers are fixed when the problem is 

set. For this example, with one input and one output, 
the number of neurons in the input and output layers 
are respectively 2 (including the bias) and 1. The prob- 
lem of selecting the architecture of the network, there- 
fore boils down to selecting the number of neurons in 

FIG. 3. Variation of the sum of the squares of the temperature 
errors as a function of the number of hidden neurons or 

order of the polynomial. 
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FIG. 4. Variation of the sum of the squares of the temperature 
errors as a function of the number of iterations. 

are not necessarily kept constant but may be changed 
throughout the learning process ]14, 281. Different 
values were tested in this investigation without sig- 
nificant improvement. In this investigation, all results 
presented using the backpropagation algorithm were 
obtained with sm = 0.95 and pm = 0. 

The quasi-Ne~rton method can be used for systems 
with continuous outputs and normally not for systems 
with binary outputs since the first derivatives of the 
objective function with respect to the weights may not 
be continuous. However, for continuous systems, this 
method is extremely efficient as compared with the 
other two methods. Indeed, a neural model containing 
five hidden neurons is slightly more accurate than a 
tenth-order polynomial to fit the EMF-tem~rature 
relationship. A feedforward neural network con- 
taining five hidden neurons has 13 parameters (weight 
connections) to evaluate whereas the tenth-order 
polynomiai contains 11. 

In addition to the better accuracy obtained with 
the quasi-Newton method, the number of iterations 
required to converge to a solution is significantly 
smaller than for the backpropagation method as 
observed in Fig. 4 for a neural network containing 
five hidden neurons, including the bias. Because the 
quasi-Newton method is more accurate and its speed 
of convergence is superior to the other two methods, 
it was used throughout this investigation. 

2. Free convection,jbr horizontal smooth cylinders 
The second example considers the correlation 

between Nusselt and Rayleigh num~rs for horizontal 
smooth cylinders. Morgan 1251 proposed the fol- 
lowing set of equations to describe the natural con- 
vection for smooth horizontal cylinders : 

Nu = 0.675Ra~.“’ IO-” d Ra < IO-’ (7a) 

NM = 1.02Ra0~“” IO-” < Ra < IO’ (7b) 

Nu = 0.850Ra0.‘“8 10’ < Ra < 10’ (7c) 

Nu = 0.480R~~~~“” lo4 < Ra < IO’ (74 

Nu = 0.125Ra0-“’ 10’ < Ra < lo’* (7e) 

Table I. Input/output information of neural networks used 
in this investigation 

Thermocouple 

Free convection 
from horizontal 
cylinders 

Natural convection 
along slender 
vertical cylinders 

I=2 U, = EMF (mV) 
u*= 1 

K=I Sz = T (W 

I=2 c’, = log,,, (Ra) 
lJz= 1 

K=l f, = log,, (Nu) 

I=4 U, = log,,, (Pr) 
iJ2 = n 
U,=R 
II,= 1 

k-=2 S, = Nu, Gr,“’ 
S2 = Nu, Gr; I,’ 

To properly determine the relationship between the 
Nusseit and the Rayleigh numbers, over a wide range 
of Rayleigh numbers, it was necessary to separate this 
range into five segments. The objective of this section 
is to investigate the possibility of replacing the five 
equations with a unique neural model. 

The architecture of the neural model is identical to 
the previous example except that it is preferable to 
perform a logarithmic transformation of the input 
and output variables (Table 1) in order to obtain a 
good accuracy over the full range of Rayleigh 
numbers. Figure 5 presents the plot of Nu as a function 
of Ra for the prediction of the data (without added 
noise) generated with the set of five equations using a 
neural network containing five hidden neurons. The 
neural model gives a very accurate representation of 
the generated data over the full range of Rayleigh 
numbers. It is clear that a unique neural model can 
adequately replace the set of five equations. In 
addition, the neural model is able to model the dis- 
continuity at a Rayleigh number of lo-*. The cor- 
responding neural model, with five hidden neurons, is 
given by the following set of equations : 
u joglo Ra-UI,,,, with U,_,,, = - 10 

uLCn,X-~,sni, 1 0’ r.max = 12 

@a) 

- Nu = C R.” 

FIG. 5. Plot of the Nusselt number as a function of Rayleigh 
number for the free convection around smooth horizontal 

cylinders. 
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W 

[s,] =J’ [157..50 -0.9527 

H, 
H2 

-2616.0 0.1831 2476.91. H, 

H, 
(%I 

1 _ 

with Si,min = - 1.0 

S*,mar = 3.5. (gd) 

A neural network is not a magic box where infor- 
mation can be entered in any fashion. In the present 
example, it is important to perform a logarithmic 
transformation of the input and the output vectors 
to find an appropriate relationship between the two 
variables. Failure to do so, results in a very inaccurate 
neural model in the lower range of Rayleigh numbers 
whereas the accuracy in the upper range is preserved 
as evidenced by the curve in Fig. 5 for the neural 
model using a linear relationship between Rayleigh 
and Nusselt numbers, Since the lower range of 
Rayleigh numbers is assimilated to a unique value of 
zero with respect to the upper range, a corresponding 
Nusselt number of 3.14, which minimized the sum 
of the squares of the errors, is obtained. 

3. Natural convection along slender vertical cylinders 
The third example is concerned with the use of a 

neural network for correlating the average and the 
local Nusselt numbers as a function of the Prandtl 
number (Pr), the exponent of the power law variation 
of the surface heat flux (n) and the surface curvature 
(a) to describe the natural convection along slender 
vertical cylinders with variable heat fluxes. Heckel et 
aZ. [26] presented an analysis of this problem and 
provided tables of values along with relatively com- 
plex equations to correlate the average and the local 
Nusselt numbers. 

For the local Nusselt number, the equation is 

Nu., Gr, *-li5 = cl(Pr)[A(Q)+f,(Pr)Q](l+ VW) 

(9a) 

where 

x(h) = PrZs5(4+9Pr’J2 + lOPr)- ‘:5 (9b) 

A(I2) = I +0.09n’:z (9c) 

.f,(Pr) = (0.032+0.176P~-“,~~4) (9d) 

Y= [[0.328-1-0.343exp (-2.12Pr’~5)]-0.195n]n 

(9e) 

W = exp [-(0.0265+0.0907Pr~0~444)R” “1 (9f) 

and for the average Nusselt number for the same 
ranges of parametric values the equation is given by 

Nzr,. GrZ- “’ = :a(Pr)IB(n)+,fl(Pr)a](l + 8) 

(lOa) 

where 

B(Q) = 1 +O.O8Q’:’ (lob) 

,fi(Pr) = (0.026+0.14Pr‘~“~3”) (1Oc) 

P= (4VW-nW)/(4+nP) (1Od) 

K = exp (-0.5CP’). (1Oe) 

In addition to the three independent variables (Pr, 
n and C2), the highly non-linear correlation equations 
contain a total of 32 parameters. This example is 
therefore an ideal problem for the use of neural net- 
works. As shown in Table 1, the neural network archi- 
tecture for this problem is comprised of four input 
neurons (including the bias) and two output neurons. 
For the same reason as for the second example, a 
logarithmic transformation was performed on the 
Prandtl number. 

The comparison of the correlation equations pro- 
posed by Heckel et al. [26] and the neural model for 
the prediction of the local and the average Nusselt 
number for the 132 values presented respectively in 
Tables 1 and 3 of their paper is presented in Fig. 6 in 
terms of prediction errors. All values of the average 
Nusselt number contained in Table 3 have to be div- 
ided by 5’.* to get the correct values [29, 301. To be 
fair in the comparison, a neural network with six 
hidden neurons was used. With a six hidden neurons 

0.3 
Nwml Model 

0.0 

2 

‘y -0.3 J 

q 0.3 

2 
Heckel et al. (1989) 

0.0 

-0.3 1 
, 

0.3 
________________________________-__--_ 

2 Neural Model 1 
0.0 

r: 
i L” -0.3 
Q 0.3 
; 

z 
0.0 

-0.3 do 
Individual Values 

FIG. 6. Plot of the average and the local Nusselt number 
prediction errors for the natural convection along slender 

vertical cylinders with variable surface heat flux. 
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architecture, the total number of weight connections 
(neural model parameters) is identical to the number 1, 

of parameters for the two correlation equations. With 

the average Nusselt number, the average sums of 
squares of the errors were respectively 1.14 and 0.49 2. 

for the correlation equations and the neural model 
whereas for the local Nusselt number, they were 0.40 3, 

and 0.49. These results clearly indicate that a neural 
network is able to correlate very efficiently complex 
systems. In this particular example, for similar accu- 4. 

racy, the effort required to obtain an appropriate *, 

model to describe the average and local Nusselt num- 
bers is far less for neural networks than the very com- 

plex set of equations obtained by Heckel et al. [26]. ~5. 

Significantly more accurate neural models are 7. 
obtained when the number of hidden neurons is 
increased ds evidenced by the dot curves of Fig. 6, 

representing the prediction errors for a network with 8. 

ten hidden neurons. With ten neurons, the sums of 

the squares of the errors are respectively 0.088 and 9, K. Hornik, M. Stinchcombe and H. White, Multilayer ^.^ 
0.072 for the average and the local Nusselt numbers. teedtorward networks are universal approxlmators, 

Another way to obtain a more accurate prediction Neural Networks 2, 359-366 (1989). 

would be to separate the prediction of the local 10. B. Irie and S. Miyaki, Capabilities of three layer per- 

and average Nusselt numbers into individual neural 
ceptrons. In IEEE Secondlnt. Conf. on Neural Networks, 

models. 
San Diego, Vol. I, pp. 641-648 (1988). 

11. W. P. Jones and J. Hoskins, Back-propagation a gener- 
alized delta learning rule, BYTE Oct., 155-162 (1987). 

12. E. Davalo and P. Naim, Des reseaux de neurones. 
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UNE METHODOLOGIE SUR LE RESEAU NEURAL POUR L’ANALYSE DES DONNEES 
DE TRANSFERT THERMIQUE 

Rhm&Le dkveloppement r&cent d’algorithmes puissants et le nombre croissant d’application dans un 
grand nombre de disciplines suggtrent que les rkseaux neuraux peuvent fournir des outils utiles pour 
mod&liser et unifier des probltmes pratiques de transfert thermique. On prCsente une introduction au calcul 
par les rkseaux neuraux. Pour &valuer la potentialit de ces rtseaux pour unifier les donntes de transfert 
thermique, trois exemples diffirents sont rCsolus en utilisant un reseau B trois couches. Deux algorithmes 
de connaissance. incluant l’algorithme classique de r&ropropagation, sont utilisks. On montre que les 

reseaux neuraux peuvent unifier correctement les don&es de transfert thermique. 

NEURALE NETZE ZUR ANALYSE VON WARMEUBERGANGSDATEN 

Zusammenfassung-Neurale Netze sind bis in die jiingstc Vergangenheit Gegenstand akademischer For- 
schung gewesen. Die neueste Entwicklung leistungsfihiger Lernalgorithmen und die zunehmende Anwen- 
dung in vielen Disziplincn lassen neurale Netze such zur Modellierung und Korrelation praktischer 
WBrmeiibergangsprobleme interessant erscheinen. Die vorliegendc Arbeit gibt eine Einfiihrung in die 
Datenverarbeitung mit Hilfe neuraler Netze. Urn das Leistungsvermiigen neuraler Netze zur Korrclation 
von Warmeiibergangsdaten auszuloten. werden drei Beispiele mit einem dreischichtigen vorwCrtsarbeit- 
enden Netzwerk behandelt. Zwei verschiedene Lernalgorithmen, such der bekannte riickwirts modifizier- 
ende Algorithmus, werden fiir Lehrzwecke verwendet. Es wird gezeigt, daB neurale Netze vcrwendet werden 

kiinnen. urn Wtirmeiibergangsdaten dem jeweiligen Anwendungsfall rntsprechend zu korrelieren. 

METOAOrMR MCHOJIb3OBAHMfl HERPOHHbIX CETEI? AJIg AHAJIH3A AAHHbIX HO 
TEI-IJIOI-IEPEHOCY 

Au~n~am~~o HeAanHero epehfeH5i HeiipoHHble 02~~ IlBJIRnHCb npeAueToh4 aKaAeh4wecKsix mmeno- 

BaHHi?. nOCJIeAHHe pa3pa60TKH UI~OPHTMOB 06y9eHsn &i yeensseeue o6nacra kix npHMeHeHWR B 

6OnbulOM KOnHWCTBe AHC,JWIHH n03BOnlIOT IlpeADOnOKWTb, ST0 HetipOHHble WTB MOryT yCl'IeWH0 

HCnOnb3OBaTbcnnpHMOA~~pOBaHAAnpaKTH~~KHX3aAa9TennOne~H~a. B AaHHOfiCTaTbenpeACTaB- 
neH0 BBeAeHne K pacveTaM c npmdetietmerd HeZipoHmdx ceTeii. C uenbm 0AeHKH noTeiiuaana Heiipow 
H~IX CeTeii, KoppenHpymmHx AaHHbIe no Tennonepemcy, pemai0Tcn TPW pa3nwiHblx npmepa c 

BClTOnb30BaHSieM T~XCOAOirH0i-i HeiiPOHHOii CeTH C np%lMOii CB113bK). &WI H3y'WHHR HefipOHHblX ‘.%Tei 

mnonb3yroTcn Aea pa3nmHbIx o6yramwx anropsrhla, nKmo9aK ~paLWu~0HHblii anropaTM o6paT- 

HOI-0 paCnpOCTpaHeHH5L nOKa3aH0, YTO Hei@OHHbIe CeTH MOryT npHMeH5iTbCR AJll aAeKBaTHOfi KOp- 

penauHHAaHHblxnoTennonepeHocy. 


